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Shape models
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➢ Polyhedral model

➢ Spherical harmonic expansion
• set of orthogonal functions 

on a sphere

➢ Geographic grid



Gravity models
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• Spherical harmonics

U – gravitational potential 
φ – latitude
λ – longitude
r – radial distance
n – degree
m – order



Gravity models
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• Ellipsoidal harmonics
• Mascons



Gravity and topography in spherical harmonics
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• Shape radius vector
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium
• Surfaces of constant density, pressure and 

potential coincide
• No shear stresses 
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium
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ρ = ρ(r), ω
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium



ρ = ρ(r), ω

ρ = ρ(r), ω

➢ Not in hydrostatic equilibrium

hard

easy
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium



Isostasy
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Watts, 2001

Isostatic equilibrium:

• Equal weight of 
crustal columns at 
the depth of 
compensation 

• Deviatoric stresses 
within the 
isostatically
compensated layer 
are minimized



Gravity anomalies
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• Free-air anomaly σFA = σobs – σmodel

σmodel = gravity of 
hydrostatic figure 



Gravity anomalies
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• Free-air anomaly

• Bouguer anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

ρ



Gravity anomalies

17

• Free-air anomaly

• Bouguer anomaly

• Isostatic anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σIA = σobs – σmodel

σmodel =

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

gravity assuming 
isostasy for ρ1, ρ2, h

h – depth of 
compensation

ρ1

ρ2

ρ



Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds
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Vesta

Ceres

Ceres location in the asteroid belt



What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.
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What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.

• Zolotov 2009

Ceres formed relatively late from planetesimals consisting of 
hydrated silicates. 

• Bland 2013

If Ceres does contain a water ice layer, its warm diurnally-
averaged surface temperature ensures extensive viscous 
relaxation of even small impact craters especially near equator
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Evidence for viscous relaxation
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Ermakov et al., in prep for JGR
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• More general approach: 
study topography power 
spectrum
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Evidence for viscous relaxation
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• More general approach: 
study topography power 
spectrum

• Power spectra for Vesta 
closely fits with the 
power law to the lowest 
degrees (λ < 750 km)

• Ceres power spectrum 
deviates from the power 
law at λ > 270 km
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Spectral-spatial localization of topography
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Ermakov et al., in prep for JGR

localization window

• Use Slepian windows to minimize spectral and spatial leakage
• Icosahedron tessellation for uniform distribution of  windows



Latitude dependence of relaxation
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more relaxed 
equatorial 
topography

Ermakov et al., in prep for JGR



Finite element model
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• Assume a density and 
rheology structure

Fu et al., 2014; Fu et al., 2017 in prep for EPSL



Finite element model
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• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

¶iui = 0

Fu et al., 2014; Fu et al., 2017 in prep for EPSL
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• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

¶iui = 0

• Compute the evolution of 
the outer surface power 
spectrum

Finite element model

Fu et al., 2014; Fu et al., 2017 in prep for EPSL



Example of a FE modeling run
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core

shell

× plastic failure location



• Ceres crust is ~ 1000 times stronger than 
water ice

• Must be dominated by rock-like materials. 
water ice in the Ceres’ crust (<30 vol%)

• The rest is a combination of serpentine 
phyllosilicates, clathrates and/or salt

Finite element modeling results
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• Simplest model to 
interpret the gravity-
topography data

Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2

Two-layer model
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• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters:
two densities, two 
radii and rotation 
rate

Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2

Two-layer model



34

• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters:
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)

2 = 0.392
Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2

Two-layer model
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Non-linear
two-layer isostatic

Two-layer hydrostatic

Zn - gravity-topography admittance

Zn =
Sgt

Stt

surface load

Observed

Isostatic model



36

Two-layer hydrostatic

Zn - gravity-topography admittance

➢ Linear two-layer hydrostatic model

Zn =
Sgt

Stt

Zn =
GM

R3

3(n+1)

2n+1

rcrust
rmean

Observed

Isostatic model
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Non-linear
two-layer isostatic

Two-layer hydrostatic

➢ Linear isostatic model

Zn - gravity-topography admittance

➢ Linear two-layer hydrostatic model

Zn =
GM

R3
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Zn =
Sgt

Stt

Zn =
GM

R3

3(n+1)

2n+1

rcrust
rmean

Dcomp Dcomp- depth of 
compensation

surface load

Observed

Isostatic model



Bouguer anomaly
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up to n = 11
Ermakov et al., in prep for JGR



Bouguer anomaly
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negative correlation of Bouguer
anomaly with topography => 
isostatic compensation

up to n = 11
Ermakov et al., in prep for JGR



Isostatic anomaly
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up to n = 11
Ermakov et al., in prep for JGR



41Image credit: NASA, DLR

Occator crater



42Image credit: NASA, DLR

Occator crater



Occator crater

43Image credit: NASA, DLR



Occator isostatic anomaly (n > 2)
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• Occator provides a linkage between internal structure and surface 
observations 



Internal activity?

45

low ρ
low ρ

Fr
ee

-a
ir

 
gr

av
it

y

Fr
ee

-a
ir

 
gr

av
it

y

Contribution from topography

Contribution from the plume

total

Negative gravity-topography correlationPositive gravity-topography 
correlation

Weak lithosphere Strong lithosphere

gr
av

it
y

gr
av

it
y



Internal activity?
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Internal activity?
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Big basins

48

Kerwan Urvara and Yalode

• Big basins are subcompensated
• Localized volatile enrichment 
• Increased impact induced porosity



Ahuna Mons
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Image credit: DLR

• Ahuna Mons is proposed to be a region of cryovolcanic activity
• Having a strong isostatic (and Bouguer) anomales, the nature of 

Ahuna Mons activity should be different from Occator



• Weakly differentiated based on gravity/topography data

• Temperature (not compositional) gradient governs rheology

• topography is isostatically compensated

• Low core density implies strong hydration (2400 kg/m3) 

• late accretion 

OR

• early efficient heat transfer due to hydrothermal circulation

• Early formation of subsurface ocean 

• No ice-dominated shell at present day
50

Summary


